Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Representation of a 2-power as sum of k 2-powers: the asymptotic behavior

Articolo
Data di Pubblicazione:
2012
Citazione:
Representation of a 2-power as sum of k 2-powers: the asymptotic behavior / G. Molteni. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - 8:8(2012 Sep), pp. 1923-1963.
Abstract:
A $k$-representation of an integer $\l$ is a representation of $\l$ as sum of $k$ powers of $2$, where representations differing by the order are considered as distinct. Let $\W(\sigma,k)$ be the maximum number of such representations for integers $\l$ whose binary representation has exactly $\sigma$ non-zero digits. $\W(\sigma,k)$ can be recovered from $\W(1,k)$ via an explicit formula, thus in some sense $\W(1,k)$ is the fundamental object. In this paper we prove that $(\W(1,k)/k!)^{1/k}$ tends to a computable limit as $k$ diverges. This result improves previous bounds which were obtained with purely combinatorial tools.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Binary partition problem; k-Representations
Elenco autori:
G. Molteni
Autori di Ateneo:
MOLTENI GIUSEPPE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/205622
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/205622/238577/28-molteni-Representation_of_a_2-power_as_sum_of_k_2-powers_the_asymptotic_behavior.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0