Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Hierarchy of folding and unfolding events of protein G, CI2, and ACBP from explicit-solvent simulations

Articolo
Data di Pubblicazione:
2011
Citazione:
Hierarchy of folding and unfolding events of protein G, CI2, and ACBP from explicit-solvent simulations / C. Camilloni, R.A. Broglia, G. Tiana. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 134:4(2011), pp. 045105.1-045105.9. [10.1063/1.3523345]
Abstract:
The study of the mechanism which is at the basis of the phenomenon of protein folding requires the knowledge of multiple folding trajectories under biological conditions. Using a biasing molecular-dynamics algorithm based on the physics of the ratchet-and-pawl system, we carry out all-atom, explicit solvent simulations of the sequence of folding events which proteins G, CI2, and ACBP undergo in evolving from the denatured to the folded state. Starting from highly disordered conformations, the algorithm allows the proteins to reach, at the price of a modest computational effort, nativelike conformations, within a root mean square deviation (RMSD) of approximately 1 . A scheme is developed to extract, from the myriad of events, information concerning the sequence of native contact formation and of their eventual correlation. Such an analysis indicates that all the studied proteins fold hierarchically, through pathways which, although not deterministic, are well-defined with respect to the order of contact formation. The algorithm also allows one to study unfolding, a process which looks, to a large extent, like the reverse of the major folding pathway. This is also true in situations in which many pathways contribute to the folding process, like in the case of protein G.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
molecular-dynamics simulations; free-energy surface; chymotryosin inhibitor-2; nonnative interactions; transition-states; atomic-resolution; dinding-protein; acyl-coenzyme; beta-hairpin; ensemble
Elenco autori:
C. Camilloni, R.A. Broglia, G. Tiana
Autori di Ateneo:
CAMILLONI CARLO ( autore )
TIANA GUIDO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/194172
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/194172/485401/1.3523345.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/03 - Fisica della Materia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0