Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Polyhedral direct sums of Banach spaces, and generalized centers of finite sets

Articolo
Data di Pubblicazione:
2012
Citazione:
Polyhedral direct sums of Banach spaces, and generalized centers of finite sets / L. Vesely. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 391:2(2012), pp. 466-479.
Abstract:
A Banach space $X$ is said to satisfy (GC) if the set $E_f(a)$ of minimizers of the function $X\ni x\mapsto f(\|x-a_1\|,\ldots,\|x-a_n\|)$ is nonempty for each integer $n\ge1$, each $a\in X^n$ and each continuous nondecreasing coercive real-valued function $f$ on $\R^n_+$. We study stability of certain polyhedrality properties under making direct sums, in order to be able to use results from a paper by Fonf, Lindenstrauss and the author to show that if $X$ satisfies (GC) and an appropriate polyhedrality property then the function space $C_b(T,X)$ satisfies (GC) for every topological space $T$. This generalizes the author's result from 1997, proved for finite dimensional polyhedral spaces $X$. Moreover, under more restrictive conditions on $X$ and $f$, the mappings $E_f(\cdot)$ on $C(K,X)^n$ ($n\ge1$) are continuous in the Hausdorff metric for each compact $K$.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Polyhedral Banach space ; Chebyshev center ; generalized centers ; optimal location ; space of continuous functions ; vector-valued function
Elenco autori:
L. Vesely
Autori di Ateneo:
VESELY LIBOR ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/191205
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0