Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Two dimensional scrolls contained in quadric cones in P^5

Articolo
Data di Pubblicazione:
2004
Citazione:
Two dimensional scrolls contained in quadric cones in P^5 / A. Alzati, M. Bertolini, G.M. Besana. - In: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG. - ISSN 0025-5858. - 74:1(2004), pp. 57-75.
Abstract:
The 2-normality of smooth complex projective varieties is a classical problem in algebraic geometry. In the context of smooth linearly normal surfaces in ${\Bbb P}^5$, an interesting topic is to know which of these surfaces are contained in a quadric hypersurface $\Gamma$. If $\Gamma$ is smooth, it can be identified with the Grassmannian of lines in ${\Bbb P}^3$, and this is a very appropiate tool. If $\Gamma$ is singular, other methods need to be used. Here, the authors prove that a smooth, complex, ruled surface is embedded in ${\Bbb P}^5$ as a linearly normal scroll and contained in a quadric cone of rank five if and only if it is either a rational degree four scroll or an indecomposable elliptic scroll of invariant $e=0$. They also obtain some results on scrolls contained in cones of lower ranks.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Hyperquadrics; Ruled surfaces
Elenco autori:
A. Alzati, M. Bertolini, G.M. Besana
Autori di Ateneo:
ALZATI ALBERTO ( autore )
BERTOLINI MARINA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/6555
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0