Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On a 3D isothermal model for nematic liquid crystals accounting for stretching terms

Articolo
Data di Pubblicazione:
2013
Citazione:
On a 3D isothermal model for nematic liquid crystals accounting for stretching terms / C. Cavaterra, E. Rocca. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - 64:1(2013 Feb), pp. 69-82. [10.1007/s00033-012-0219-7]
Abstract:
In the present contribution, we study a PDE system describing the evolution of a nematic liquid crystals flow under kinematic transports for molecules of different shapes. More in particular, the evolution of the velocity field u is ruled by the Navier–Stokes incompressible system with a stress tensor exhibiting a special coupling between the transport and the induced terms. The dynamics of the director field d is described by a variation of a parabolic Ginzburg–Landau equation with a suitable penalization of the physical constraint |d| = 1. Such equation accounts for both the kinematic transport by the flow field and the internal relaxation due to the elastic energy. The main aim of this contribution is to overcome the lack of a maximum principle for the director equation and prove (without any restriction on the data and on the physical constants of the problem) the existence of global in time weak solutions under physically meaningful boundary conditions on d and u.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Liquid crystals ; Navier–Stokes system ; Existence of weak solutions
Elenco autori:
C. Cavaterra, E. Rocca
Autori di Ateneo:
CAVATERRA CECILIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/175398
Progetto:
Entropy formulation of evolutionary phase transitions
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0