Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts

Articolo
Data di Pubblicazione:
2012
Citazione:
Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts / M. Aureli,R. Bassi, N. Loberto, S. Regis, A. Prinetti, V. Chigorno, J.M. Aerts, R.G. Boot, M. Filocamo, S. Sonnino. - In: JOURNAL OF INHERITED METABOLIC DISEASE. - ISSN 0141-8955. - 35:6(2012), pp. 1081-1091. [10.1007/s10545-012-9478-x]
Abstract:
Gaucher disease (GD) is the most common lysosomal disorder and is caused by an inherited autosomal recessive deficiency in β-glucocerebrosidase. This enzyme, like other glycohydrolases involved in glycosphingolipid (GSL) metabolism, is present in both plasma membrane (PM) and intracellular fractions. We analyzed the activities of CBE-sensitive β-glucosidase (GBA1) and AMP-DNM-sensitive β-glucosidase (GBA2) in total cell lysates and PM of human fibroblast cell lines from control (normal) subjects and from patients with GD clinical types 1, 2, and 3. GBA1 activities in both total lysate and PM of GD fibroblasts were low, and their relative percentages were similar to those of control cells. In contrast, GBA2 activities were higher in GD cells than in control cells, and the degree of increase differed among the three GD types. The increase of GBA2 enzyme activity was correlated with increased expression of GBA2 protein as evaluated by QRT-PCR. Activities of β-galactosidase and β-hexosaminidase in PM were significantly higher for GD cells than for control cells and also showed significant differences among the three GD types, suggesting the occurrence of cross-talk among the enzymes involved in GSL metabolism. Our findings indicate that the profiles of glycohydrolase activities in PM may provide a valuable tool to refine the classification of GD into distinct clinical types.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M. Aureli, R. Bassi, N. Loberto, S. Regis, A. Prinetti, V. Chigorno, J.M. Aerts, R.G. Boot, M. Filocamo, S. Sonnino
Autori di Ateneo:
AURELI MASSIMO ( autore )
BASSI ROSARIA ( autore )
PRINETTI ALESSANDRO ENNIO GIUSEPPE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/174014
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIO/10 - Biochimica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0