Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Spectral theory for linear operators of mixed type and applications to nonlinear Dirichlet problems

Articolo
Data di Pubblicazione:
2012
Citazione:
Spectral theory for linear operators of mixed type and applications to nonlinear Dirichlet problems / D. Lupo, D.D. Monticelli, K.R. Payne. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 37:9(2012), pp. 1495-1516. [10.1080/03605302.2012.686549]
Abstract:
For a class of linear partial differential operators L of mixed elliptic-hyperbolic type in divergence form with homogeneous Dirichlet data on the entire boundary of suitable planar domains, we exploit the recent weak well-posedness result of (Lupo, Morawetz, Payne 2007) and minimax methods to establish a complete spectral theory in the context of weighted Lebesgue and Sobolev spaces. The results represent the first robust spectral theory for mixed type equations. In particular, we find a basis for a weighted version of the space H^1_0(Omega) comprised of weak eigenfunctions which are orthogonal with respect to a natural bilinear form associated to L. The associated eigenvalues {lambda_k} are all non zero, have finite multiplicity and yield a doubly infinite sequence tending to plus and minus infinity. The solvability and spectral theory are then combined with topological methods of nonlinear analysis to establish the first results on existence, existence with uniqueness and bifurcation from (lambda_k, 0) for associated semilinear Dirichlet problems.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
spectral thoery; variazional characterization of eigenvalues; mixed type PDE; bifurcation; nonlinear analysis
Elenco autori:
D. Lupo, D.D. Monticelli, K.R. Payne
Autori di Ateneo:
PAYNE KEVIN RAY ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/203969
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0