Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Geometry and arithmetic of Maschke's Calabi-Yau three-fold

Articolo
Data di Pubblicazione:
2011
Citazione:
Geometry and arithmetic of Maschke's Calabi-Yau three-fold / G. Bini, L. van Geemen. - In: COMMUNICATIONS IN NUMBER THEORY AND PHYSICS. - ISSN 1931-4523. - 5:4(2011 Dec), pp. 779-826.
Abstract:
Maschke's Calabi-Yau three-fold is the double cover of projective three space branched along Maschke's octic surface. This surface is defined by the lowest degree invariant of a certain finite group acting on a four-dimensional (4D) vector space. Using this group, we show that the middle Betti cohomology group of the three-fold decomposes into the direct sum of 150 2D Hodge substructures. We exhibit 1D families of rational curves on the three-fold and verify that the associated Abel-Jacobi map is non-trivial. By counting the number of points over finite fields, we determine the rank of the Neron-Severi group of Maschke's surface and the Galois representation on the transcendental lattice of some of its quotients. We also formulate precise conjectures on the modularity of the Galois representations associated to Maschke's three-fold (these have now been proven by M. Schutt) and to a genus 33 curve, which parametrizes rational curves in the three-fold.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
G. Bini, L. van Geemen
Autori di Ateneo:
VAN GEEMEN LAMBERTUS ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/220232
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0