Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Identification of a real constant in linear evolution equations in Hilbert spaces

Articolo
Data di Pubblicazione:
2011
Citazione:
Identification of a real constant in linear evolution equations in Hilbert spaces / A. Lorenzi, G. Mola. - In: INVERSE PROBLEMS AND IMAGING. - ISSN 1930-8337. - 5:3(2011 Aug), pp. 695-714. [10.3934/ipi.2011.5.695]
Abstract:
Let $H$ be a real separable Hilbert space and $A:\mathcal{D}(A) \to H$ be a positive and self-adjoint (unbounded) operator, and denote by $A^\sigma$ its power of exponent $\sigma \in [-1,1)$. We consider the identification problem consisting in searching for a function $u:[0,T] \to H$ and a real constant $\mu$ that fulfill the initial-value problem $$ u' + Au = \mu \, A^\sigma u, \quad t \in (0,T), \quad u(0) = u_0, $$ and the additional condition $$ \alpha \|u(T)\|^{2} + \beta \int_{0}^{T}\|A^{1/2}u(\tau)\|^{2}d\tau = \rho, $$ where $u_{0} \in H$, $u_{0} \neq 0$ and $\alpha, \beta \geq 0$, $\alpha+\beta > 0$ and $\rho >0$ are given. By means of a finite-dimensional approximation scheme, we construct a unique solution $(u,\mu)$ of suitable regularity on the whole interval $[0,T]$, and exhibit an explicit continuous dependence estimate of Lipschitz-type with respect to the data $u_{0}$ and $\rho $. Also, we provide specific applications to second and fourth-order parabolic initial-boundary value problems.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Faedo-Galerkin approximation; Identification problems; Linear evolution equa- tions in Hilbert spaces; Linear parabolic equations; Unknown constants; Well-posedness results
Elenco autori:
A. Lorenzi, G. Mola
Link alla scheda completa:
https://air.unimi.it/handle/2434/167437
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0