Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

IDENTIFICATION OF A SOURCE TERM AND A COEFFICIENT IN A PARABOLIC DEGENERATE PROBLEM

Tesi di Dottorato
Data di Pubblicazione:
2012
Citazione:
IDENTIFICATION OF A SOURCE TERM AND A COEFFICIENT IN A PARABOLIC DEGENERATE PROBLEM / U. Fedus ; tutor: A. Lorenzi ; coordinatore: M. Peloso. Universita' degli Studi di Milano, 2012 Feb 20. 24. ciclo, Anno Accademico 2011. [10.13130/fedus-ulyana_phd2012-02-20].
Abstract:
The globally in time existence and uniqueness of solutions to inverse problems is one of the most difficult questions to be answered. Even though the direct problems are well-posed in the sense of Hadamard (i.e. existence, uniqueness and stability results hold true), the inverse ones generally are not. The situation gets more complicated if the equation contains more than one unknown coefficient, and even more if the unknown functions depend on different variables. We consider the following identification abstract problem in a general Banach space $X$: find a function $u:[0,T] \to X,$ a coefficient $a_1:[0,T] \to \mathbb R$ and a vector $z \in X$ such that the initial-value problem \begin{align} &\frac{1}{a_0(t)}\ u'(t)-Au(t)-a_1(t)u(t)\!=\!f(t)z+g(t), \qq u(0)=u_0 \label{zi2} \end{align} is fulfilled, where $a_0(t)>0$ and $a_0(t)=0$ only in some negligible set, while $A:D(A)\subset X \to X$ is a closed linear operator, $f$ is scalar functions and $g$ is a $X$-valued source term. The occurrence of two unknowns require to introduce two additional conditions. We choose the first as nonlocal one in the integral form $\imi \!\!\varphi(t)u(t)d\mu(t)\!=\!h,$ where $\mu$ is a Borel measure on the interval $[0,T].$ The latter is of the following form: $\Phi[u(t)]=k(t), \: t\!\in\! [0,T],$ where $\Phi$ is a prescribed linear continuous functional. Here the functions $h$, $k, \varphi$ are scalar. So, we investigate the problem (\ref{zi2}) along with these additional conditions. We study explicitly the case of the \textit{Dirac measure} concentrated at $t=T_1, 0
Tipologia IRIS:
Tesi di dottorato
Elenco autori:
U. Fedus
Link alla scheda completa:
https://air.unimi.it/handle/2434/170623
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/170623/169522/phd_unimi_R08041.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0