Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Global gridded multi-temporal datasets to support human population distribution modelling

Articolo
Data di Pubblicazione:
2025
Citazione:
Global gridded multi-temporal datasets to support human population distribution modelling / D. Woods, T. Mckeen, A. Cunningham, R. Priyatikanto, A.J. Tatem, A. Sorichetta, M. Bondarenko. - In: GATES OPEN RESEARCH. - ISSN 2572-4754. - 9:(2025 Oct 22), pp. 72.1-72.22. [10.12688/gatesopenres.16363.1]
Abstract:
Population distributions across countries and regions exhibit significant spatial and temporal variability. This variation highlights the need for high-resolution, small-area demographic data to address the challenges posed by shifting population dynamics, urbanization, and migration. Small area population modelling, particularly the production of gridded population estimates, has advanced rapidly over the past decade. Gridded population estimates rely heavily on the availability of detailed geospatial ancillary datasets to capture, inform and explain the variabilities in population densities and distributions at small area scales, enabling the disaggregation from areal unit-based counts. Here we describe an extensive geospatial collection of annual, high resolution, spatio-temporally harmonised, global datasets aimed at driving improvements in mapping small area population density variation. This article presents the spatio-temporal harmonisation process that results in an open access repository of 73 individual gridded datasets addressing topography, climate, nighttime lights, land cover, inland water, infrastructure, protected areas as well as the built-up environment on a global level at a spatial resolution of 3 arc-seconds (approximately 100 metres). Datasets are available as annual time series from 2015 up to and including at least 2020, and as recent as 2023 where source datasets allow. Such datasets not only support population modelling but also applications across environmental, economic, and health sectors, supporting informed policy-making and resource allocation for sustainable development.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
spatial demography; geospatial covariates; high-resolution gridded data; human population; subnational; global; spatial dataset; multi-temporal
Elenco autori:
D. Woods, T. Mckeen, A. Cunningham, R. Priyatikanto, A.J. Tatem, A. Sorichetta, M. Bondarenko
Autori di Ateneo:
SORICHETTA ALESSANDRO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1210018
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1210018/3230897/63_Woods_etal_GatesOpenResearch_25%20-%20Accepted.pdf
Progetto:
WorldPop Global Demographic Data (Global2)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (4)


Settore CEAR-04/A - Geomatica

Settore GEOG-01/A - Geografia

Settore GEOS-03/B - Geologia applicata

Settore STAT-03/A - Demografia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0