Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Benchmarking and Consensus Ranking of Inverse Folding Models for Protein-Ligand Interface Design

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Citazione:
Benchmarking and Consensus Ranking of Inverse Folding Models for Protein-Ligand Interface Design / Y. Wei, U. Guerrini, I. Eberini - In: BCB Companion '25: Companion / [a cura di] M. Xinghua Shi, X. Qian. - [s.l] : ACM, 2025. - ISBN 979-8-4007-2222-6. - pp. 1-7 (( 16. International Conference on Bioinformatics, Computational Biology and Health Informatics Philadelphia 2025 [10.1145/3768322.3769031].
Abstract:
Machine learning has advanced the progress of protein design, also enabling more efficient and accurate modeling of protein-ligand interfaces. Due to the complexity of biological systems, selecting optimal candidates from the heterogeneous outputs of generative protein design tools remains a persistent challenge. In this work, we introduce a consensus ranking framework that integrates five state- of-the-art inverse folding models — ProteinMPNN, LigandMPNN, ESM-IF1, CARBonAra, and ProRefiner — applied to 25,716 curated protein-ligand complexes from the BioLip database. Our approach frames design selection as a supervised learning-to-rank problem and leverages a LightGBM-based LambdaMART model to fuse het- erogeneous scoring features into a unified ranking. We pointed out that consensus-ranked sequences outperform individual model selections in stability, binding affinity, and structural fidelity, as evaluated using Schrödinger and MOE free energy difference cal- culations. In a case study on three enzymes (NOV1, CYP153A, and LCD), our method consistently improves design quality, suggesting that consensus ranking can significantly enhance the success rate and efficiency of AI-driven protein engineering.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Machine Learning; Protein Design
Elenco autori:
Y. Wei, U. Guerrini, I. Eberini
Autori di Ateneo:
EBERINI IVANO ( autore )
WEI YAO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1203255
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1203255/3206681/Benchmarking%20and%20Consensus%20Ranking%20of%20Inverse%20Folding%20Models%20for%20Protein-Ligand%20Interface%20Design.pdf
Titolo del libro:
BCB Companion '25: Companion
Progetto:
Metal-containing Radical Enzymes (MetRaZymes)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIOS-07/A - Biochimica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0