Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Analysis of a Navier–Stokes phase-field crystal system

Articolo
Data di Pubblicazione:
2025
Citazione:
Analysis of a Navier–Stokes phase-field crystal system / C. Cavaterra, M. Grasselli, M.A. Mehmood, R. Voso. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 83:(2025 Jun), pp. 104263.1-104263.31. [10.1016/j.nonrwa.2024.104263]
Abstract:
We consider an evolution system modeling a flow of colloidal particles which are suspended in an incompressible fluid and accounts for colloidal crystallization. The system consists of the Navier–Stokes equations for the volume averaged velocity coupled with the so-called Phase-Field Crystal equation for the density deviation. Considering this system in a periodic domain and assuming that the viscosity as well as the mobility depend on the density deviation, we first prove the existence of a weak solution in dimension three. Then, in dimension two, we establish the existence of a (unique) strong solution.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Navier–Stokes system; Phase-field crystal equation; Strong solutions; Weak solutions;
Elenco autori:
C. Cavaterra, M. Grasselli, M.A. Mehmood, R. Voso
Autori di Ateneo:
CAVATERRA CECILIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1190358
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1190358/3166804/1-s2.0-S1468121824002025-main.pdf
Progetto:
Partial differential equations and related geometric-functional inequalities.
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MATH-03/A - Analisi matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0