Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Market Making without Regret

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Citazione:
Market Making without Regret / N. Cesa Bianchi, T. Cesari, R. Colomboni, L. Foscari, V. Pathak (PROCEEDINGS OF MACHINE LEARNING RESEARCH). - In: The Thirty Eighth Annual Conference on Learning Theory / [a cura di] N. Haghtalab, A. Moitra. - [s.l] : PMLR, 2025. - pp. 799-837 (( Intervento presentato al 38. convegno Conference on Learning Theory tenutosi a Lyon nel 2025.
Abstract:
We consider a sequential decision-making setting where, at every round t, the learner (a market maker) posts a bid price Bt and an ask price At to an incoming trader (the taker) with a private valuation for some asset. If the trader’s valuation is lower than the bid price, or higher than the ask price, then a trade (sell or buy) occurs. Letting Mt be the market price (observed only at the end of round t), the maker’s utility is Mt − Bt if the maker bought the asset, it is At − Mt if they sold it, and it is 0 if no trade occurred. We characterize the maker’s regret with respect to the best fixed choice of bid and ask pairs under a variety of assumptions (adversarial, i.i.d., and their variants) on the sequence of market prices and valuations. Our upper bound analysis unveils an intriguing connection relating market making to first-price auctions and dynamic pricing. Our main technical contribution is a lower bound for the i.i.d. case with Lipschitz distributions and independence between market prices and takers’ valuations. The difficulty in the analysis stems from a unique relationship between the reward and feedback functions that allows learning algorithms to trade off reward for information in a continuous way.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Regret minimization; online learning; market making; first-price auctions; dynamic pricing
Elenco autori:
N. Cesa Bianchi, T. Cesari, R. Colomboni, L. Foscari, V. Pathak
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
FOSCARI LUIGI ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1177075
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1177075/3116174/cesa-bianchi25a.pdf
Titolo del libro:
The Thirty Eighth Annual Conference on Learning Theory
Progetto:
Algorithms, Games, and Digital Markets (ALGADIMAR)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0