Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

TransferEdge: Transfer learning approach to detect evolving DDoS threats in Edge-IIoT

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Citazione:
TransferEdge: Transfer learning approach to detect evolving DDoS threats in Edge-IIoT / M.B. Anley, A. Genovese, V. Piuri - In: 2025 IEEE 9th Forum on Research and Technologies for Society and Industry (RTSI)[s.l] : IEEE, 2025 Aug 24. - ISBN 979-8-3315-9788-7. - pp. 11-16 (( International Forum on Research and Technologies for Society and Industry Tunis 2025 [10.1109/RTSI64020.2025.11212499].
Abstract:
The rapid proliferation of edge IoT systems in critical infrastructures, from smart cities to industrial IoT (IIoT) environments, has introduced significant security challenges, particularly Distributed Denial-of-Service (DDoS) attacks. These attacks can degrade service quality and compromise the availability and integrity of services. Although deep learning (DL) models have shown promise in detecting DDoS attacks, their reliance on large, high-quality labeled datasets limits their adaptability in dynamic IoT environments. Transfer learning offers a potential solution; however, existing methods often struggle with domain adaptation and effective knowledge transfer across heterogeneous datasets, leading to suboptimal performance against evolving attack patterns. To address these challenges, we propose TransferEdge, a novel transfer learning-based approach to detect evolving DDoS attacks in industrial IoT edge systems. TransferEdge leverages pre-trained models and describes a novel approach to optimize fine-tuning strategies tailored for DDoS attack detection, so as to align feature spaces and bridge the distributional gap between source and target domains. Experimental evaluations on the UNSW-NB15 and BoT-IoT datasets demonstrate that TransferEdge improves detection accuracy and decreases training time compared to conventional DL methods and current transfer learning approaches.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Transfer Learning; IoT Security; DDoS Detection; Edge IIoT; Fine-Tuning
Elenco autori:
M.B. Anley, A. Genovese, V. Piuri
Autori di Ateneo:
ANLEY MULUALEM BITEW ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1176595
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1176595/3171901/rtsi25.pdf
Titolo del libro:
2025 IEEE 9th Forum on Research and Technologies for Society and Industry (RTSI)
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore IINF-05/A - Sistemi di elaborazione delle informazioni

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0