Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Computing the Why-Provenance for Datalog Queries via SAT Solvers

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Computing the Why-Provenance for Datalog Queries via SAT Solvers / M. Calautti, E. Livshits, A. Pieris, M. Schneider (CEUR WORKSHOP PROCEEDINGS). - In: SEBD 2024 / [a cura di] M. Atzori, P. Ciacci, M. Ceci, F. Mandreoli, D. Malerba, M. Sanguinetti, A. Pellicani, F. Motta. - [s.l] : CEUR, 2024. - pp. 51-60 (( Intervento presentato al 32. convegno Symposium on Advanced Database Systems : June, 23rd to 26th tenutosi a Villasimius nel 2024.
Abstract:
Explaining an answer to a Datalog query is an essential task towards Explainable AI, especially nowadays where Datalog plays a critical role in the development of ontology-based applications. A well-established approach for explaining a query answer is the so-called why-provenance, which essentially collects all the subsets of the input database that can be used to obtain that answer via some derivation process, typically represented as a proof tree. It is well known, however, that computing the why-provenance for Datalog queries is computationally expensive, and thus, very few attempts can be found in the literature. The goal of this work is to demonstrate how off-the-shelf SAT solvers can be exploited towards an efficient computation of the why-provenance for Datalog queries. Interestingly, our SAT-based approach allows us to build the why-provenance in an incremental fashion, that is, one explanation at a time, which is much more useful in a practical context than the one-shot computation of the whole set of explanations as done by existing approaches.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
computational complexity; Datalog queries; explainability; why-provenance;
Elenco autori:
M. Calautti, E. Livshits, A. Pieris, M. Schneider
Autori di Ateneo:
CALAUTTI Marco ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1106292
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1106292/2552394/C31%20(SEBD%202024).pdf
Titolo del libro:
SEBD 2024
Progetto:
Dynamic Disinformation Networks: Where is the Truth? (DISTORT)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0