Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Geometry of perturbed Gaussian states and quantum estimation

Articolo
Data di Pubblicazione:
2011
Citazione:
Geometry of perturbed Gaussian states and quantum estimation / M. G. Genoni, P. Giorda, M. Paris. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 44:15(2011), pp. 152001.152001.1-152001.152001.7. [10.1088/1751-8113/44/15/152001]
Abstract:
We address the nonGaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed we show that nG provides an upper bound to the QFI. Our results show that the geometry of nonGaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analyzed in some details with the aim of finding the maximally non Gaussian state obtainable from a given Gaussian one.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M.G. Genoni, P. Giorda, M. Paris
Autori di Ateneo:
GENONI MARCO GIOVANNI ( autore )
PARIS MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/154859
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/03 - Fisica della Materia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0