Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Computational-based volatile organic compounds discrimination : an experimental low-cost setup

Contributo in Atti di convegno
Data di Pubblicazione:
2010
Citazione:
Computational-based volatile organic compounds discrimination : an experimental low-cost setup / V. Di Lecce, M. Calabrese, R. Dario - In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2010)[s.l] : IEEE, 2010. - ISBN 978-1-4244-7228-4. - pp. 54-59 (( convegno IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2010) tenutosi a Taranto nel 2010 [10.1109/CIMSA.2010.5611763].
Abstract:
In this work, an array of low-cost cross-sensitive sensors is used for discriminating the best candidate within a set of volatile organic compounds (VOCs). The challenge of our experimental setting is to deal with the problems of low selectivity, especially in normal operating conditions, so that ambiguous sensor responses (i.e. referable to more than one VOC) can be given, at least, a qualitative interpretation. In order to carry out the signal disambiguation task, a computational technique employing simple classifying rules and fuzzy descriptions has been engineered. The basic idea is that, if the same gas is actually measured by two or more sensors, then the estimated concentrations will show a low variance, with an accuracy related to the number of concordant sensors. Experiments show that, despite the cheapness of the setup and the coarse-grained nature of the provided response, encouraging results can be obtained and prospective work can follow.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Fuzzy descriptions; Low-cost sensors; Sensor array; Sensor response disambiguation
Elenco autori:
V. Di Lecce, M. Calabrese, R. Dario
Link alla scheda completa:
https://air.unimi.it/handle/2434/153477
Titolo del libro:
IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2010)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0