Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the constants in a Kato inequality for the Euler and Navier-Stokes equations

Altro Prodotto di Ricerca
Data di Pubblicazione:
2010
Citazione:
On the constants in a Kato inequality for the Euler and Navier-Stokes equations / C. Morosi, L. Pizzocchero. - [s.l] : arXiv, 2010 Sep.
Abstract:
We continue an analysis, started in (C. Morosi, L. Pizzocchero, arXiv:1007.4412v2 [math.AP] (2010)), of some issues related to the incompressible Euler or Navier-Stokes (NS) equations on a d-dimensional torus T^d. More specifically, we consider the quadratic term in these equations; this arises from the bilinear map (v,w) → v . Dw, where v,w : T^d → R^d are two velocity fields. We derive upper and lower bounds for the constants in some inequalities related to the above bilinear map; these bounds hold, in particular, for the sharp constants G_{n d} ≡ G_n in the Kato inequality |< v . Dw | w>_n| <= G_n || v ||_n || w ||^2_n, where n ∈ (d/2 + 1,+∞) and v,w are in the Sobolev spaces H^n ,H^{n+1} of zero mean, divergence free vector fields of orders n and n + 1, respectively. As examples, the numerical values of our upper and lower bounds are reported for d = 3 and some values of n. When combined with the results of (C. Morosi, L. Pizzocchero, arXiv:1007.4412v2 [math.AP] (2010)) on another inequality, the results of the present paper can be employed to set up fully quantitative error estimates for the approximate solutions of the Euler/NS equations, or to derive quantitative bounds on the time of existence of the exact solutions with specified initial data; a sketch of this program is given.
Tipologia IRIS:
08 - Relazione interna o rapporto di ricerca
Keywords:
Navier-Stokes equations ; inequalities ; Sobolev spaces
Elenco autori:
C. Morosi, L. Pizzocchero
Autori di Ateneo:
PIZZOCCHERO LIVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/152009
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/152009/155269/1009.2051v1.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0