Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the constants for multiplication in Sobolev spaces

Articolo
Data di Pubblicazione:
2006
Citazione:
On the constants for multiplication in Sobolev spaces / C. Morosi, L. Pizzocchero. - In: ADVANCES IN APPLIED MATHEMATICS. - ISSN 0196-8858. - 36:4(2006), pp. 319-363. [10.1016/j.aam.2005.09.002]
Abstract:
For $n > d/2$, the Sobolev (Bessel potential) space $H^n(\reali^d, \complessi)$ is known to be a Banach algebra with its standard norm $\|~\|_n$ and the pointwise product; so, there is a best constant $K_{n d}$ such that $\| f g \|_{n} \leqs K_{n d} \| f \|_{n} \| g \|_{n}$ for all $f, g$ in this space. In this paper we derive upper and lower bounds for these constants, for any dimension $d$ and any (possibly noninteger) $n \in (d/2, + \infty)$. Our analysis also includes the limit cases $n \vain (d/2)^{+}$ and $n \vain + \infty$, for which asymptotic formulas are presented. Both in these limit cases and for intermediate values of $n$, the lower bounds are fairly close to the upper bounds. Numerical tables are given for $d=1,2,3,4$, where the lower bounds are always between $75 \%$ and $88 \%$ of the upper bounds.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Sobolev spaces; inequalities; pointwise multiplication
Elenco autori:
C. Morosi, L. Pizzocchero
Autori di Ateneo:
PIZZOCCHERO LIVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/27359
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0