Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Strong convergence towards self-similarity for one-dimensional dissipative Maxwell models

Articolo
Data di Pubblicazione:
2009
Citazione:
Strong convergence towards self-similarity for one-dimensional dissipative Maxwell models / G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 257:7(2009 Oct), pp. 2291-2324.
Abstract:
We prove the propagation of regularity, uniformly in time, for the scaled solutions of the one-dimensional dissipative Maxwell models introduced in [D. Ben-Avraham, E. Ben-Naim, K. Lindenberg, A. Rosas, Self-similarity in random collision processes, Phys. Rev. E 68 (2003) R050103]. This result together with the weak convergence towards the stationary state proven in [L. Pareschi, G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys. 124 (2–4) (2006) 747–779] implies the strong convergence in Sobolev norms and in the L1 norm towards it depending on the regularity of the initial data. As a consequence, the original nonscaled solutions are also proved to be convergent in L1 towards the corresponding self-similar homogeneous cooling state. The proof is based on the (uniform in time) control of the tails of the Fourier transform of the solution, and it holds for a large range of values of the mixing parameters. In particular, in the case of the one-dimensional inelastic Boltzmann equation, the result does not depend of the degree of inelasticity.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Asymptotic behavior; Dissipative Boltzmann equation; Granular gases
Elenco autori:
G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani
Autori di Ateneo:
TERRANEO ELIDE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/151584
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0