Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Hilbert modular forms : mod $p$ and $p$-adic aspects

Articolo
Data di Pubblicazione:
2005
Citazione:
Hilbert modular forms : mod $p$ and $p$-adic aspects / F. Andreatta, E.Z. Goren. - In: MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0065-9266. - 173:819(2005), pp. 1-100.
Abstract:
We study Hilbert modular forms in characteristic~$p$ and over $p$-adic rings. In the characteristic~$p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$,~$V$ and~$\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric -- comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus. In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms ``\`a la Serre" as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms ``\`a la Katz" that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and~$\Theta_\chi$ to the $p$-adic setting.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Congruence; Filtration; Hilbert modular form; Hilbert modular variety; Zeta function
Elenco autori:
F. Andreatta, E.Z. Goren
Autori di Ateneo:
ANDREATTA FABRIZIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/24551
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0