Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Prediction of early distant recurrence in upfront resectable pancreatic adenocarcinoma: A multidisciplinary, machine learning-based approach

Articolo
Data di Pubblicazione:
2021
Citazione:
Prediction of early distant recurrence in upfront resectable pancreatic adenocarcinoma: A multidisciplinary, machine learning-based approach / D. Palumbo, M. Mori, F. Prato, S. Crippa, G. Belfiori, M. Reni, J. Mushtaq, F. Aleotti, G. Guazzarotti, R. Cao, S. Steidler, D. Tamburrino, E. Spezi, A. Del Vecchio, S. Cascinu, M. Falconi, C. Fiorino, F. De Cobelli. - In: CANCERS. - ISSN 2072-6694. - 13:19(2021), pp. 4938.1-4938.16. [10.3390/cancers13194938]
Abstract:
Despite careful selection, the recurrence rate after upfront surgery for pancreatic adenocarcinoma can be very high. We aimed to construct and validate a model for the prediction of early distant recurrence (<12 months from index surgery) after upfront pan-creaticoduodenectomy. After exclusions, 147 patients were retrospectively enrolled. Preoperative clinical and radiological (CT-based) data were systematically evaluated; more-over, 182 radiomics features (RFs) were extracted. Most significant RFs were selected using minimum redundancy, robustness against delineation uncertainty and an original machine learning bootstrap-based method. Patients were split into training (n = 94) and validation cohort (n = 53). Multivariable Cox regression analysis was first applied on the training cohort; the resulting prognostic index was then tested in the validation cohort. Clinical (serum level of CA19.9), radiological (necrosis), and radiomic (SurfArea-ToVolumeRatio) features were significantly associated with the early resurge of distant recurrence. The model combining these three variables performed well in the training cohort (p = 0.0015,HR = 3.58,95%CI = 1.98–6.71) and was then confirmed in the validation cohort (p = 0.0178,HR = 5.06,95%CI = 1.75–14.58). The comparison of survival curves between low and high-risk patients showed a p-value <0.0001. Our model may help to better define resectability status, thus providing an actual aid for pancreatic adenocarcinoma patients’ management (upfront surgery vs. neoadjuvant chemotherapy). Independent val-idations are warranted.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Computed tomography; Machine learning; Pancreatic adenocarcinoma; Prognosis; Radiomics; X-ray
Elenco autori:
D. Palumbo, M. Mori, F. Prato, S. Crippa, G. Belfiori, M. Reni, J. Mushtaq, F. Aleotti, G. Guazzarotti, R. Cao, S. Steidler, D. Tamburrino, E. Spezi, A. Del Vecchio, S. Cascinu, M. Falconi, C. Fiorino, F. De Cobelli
Link alla scheda completa:
https://air.unimi.it/handle/2434/1033255
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1033255/2370783/cancers-13-04938-v2.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0