Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds

Articolo
Data di Pubblicazione:
2024
Citazione:
Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds / S. Ibrahimi, L. D’Andrea, D. Gastaldi, M.W. Rivolta, P. Vena. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - 423:(2024), pp. 116842.1-116842.16. [10.1016/j.cma.2024.116842]
Abstract:
Triply-Periodic Minimal Surfaces (TPMS) analytical formulation does not provide a direct correlation between the input parameters (analytical) and the mechanical and morphological properties of the structure. In this work, we created a dataset with more than one thousand TPMS scaffolds for the training of Machine Learning (ML) models able to find such correlation. Finite Element Modeling and image analysis have been used to characterize the scaffolds. In particular, we trained three different ML models, exploring both a linear and non-linear approach, to select the features able to predict the input parameters. Furthermore, the features used for the prediction can be selected in three different modes: i) fully automatic, through a greedy algorithm, ii) arbitrarily, by the user and iii) in a combination of the two above methods: i.e. partially automatic and partially through a user-selection. The latter, coupled with the non- linear ML model, exhibits a median error less than 3% and a determination coefficient higher than 0.89 for each of the selected features, and all of them are accessible during the design phase. This approach has been applied to the design of a hydroxyapatite TPMS scaffolds with prescribed properties obtained from a real trabecular-like hydroxyapatite scaffold. The obtained results demonstrate that the ML model can effectively design a TPMS scaffold with prescribed features on the basis of biomechanical, mechanobiology and technological constraints.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Bone tissue engineering; Finite element; Machine learning; Mechanical properties; Scaffold; Triply-periodic minimal surface
Elenco autori:
S. Ibrahimi, L. D’Andrea, D. Gastaldi, M.W. Rivolta, P. Vena
Autori di Ateneo:
IBRAHIMI SILVIA ( autore )
RIVOLTA MASSIMO WALTER ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1053229
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1053229/2418193/J31_ML_Scaffolds.pdf
Progetto:
Artificial Intelligence-based design of 3D PRINTed scaffolds for the repair of critical-sized BONE defects - I-PRINT-MY-BONE
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore INF/01 - Informatica

Settore ING-IND/34 - Bioingegneria Industriale

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0