Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Trading-Off Payments and Accuracy in Online Classification with Paid Stochastic Experts

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
Trading-Off Payments and Accuracy in Online Classification with Paid Stochastic Experts / D. Van Der Hoeven, C. Pike-Burke, H. Qiu, N. Cesa Bianchi (PROCEEDINGS OF MACHINE LEARNING RESEARCH). - In: International Conference on Machine Learning / [a cura di] A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, J. Scarlett. - [s.l] : PMLR, 2023. - pp. 34809-34830 (( convegno International Conference on Machine Learning tenutosi a Honolulu nel 2023.
Abstract:
We investigate online classification with paid stochastic experts. Here, before making their prediction, each expert must be paid. The amount that we pay each expert directly influences the accuracy of their prediction through some unknown Lipschitz “productivity” function. In each round, the learner must decide how much to pay each expert and then make a prediction. They incur a cost equal to a weighted sum of the prediction error and upfront payments for all experts. We introduce an online learning algorithm whose total cost after $T$ rounds exceeds that of a predictor which knows the productivity of all experts in advance by at most $\mathcal{O}\big(K^2(\ln T)\sqrt{T}\big)$ where $K$ is the number of experts. In order to achieve this result, we combine Lipschitz bandits and online classification with surrogate losses. These tools allow us to improve upon the bound of order $T^{2/3}$ one would obtain in the standard Lipschitz bandit setting. Our algorithm is empirically evaluated on synthetic data.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
D. Van Der Hoeven, C. Pike-Burke, H. Qiu, N. Cesa Bianchi
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
QIU HAO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1024139
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1024139/2345792/van-der-hoeven23a.pdf
Titolo del libro:
International Conference on Machine Learning
Progetto:
Algorithms, Games, and Digital Markets (ALGADIMAR)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0