Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A bound on the degree of schemes defined by quadratic equations

Articolo
Data di Pubblicazione:
2012
Citazione:
A bound on the degree of schemes defined by quadratic equations / A. Alzati, J.C. Sierra. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - 24:4(2012), pp. 733-750. [10.1515/form.2011.081]
Abstract:
We consider complex projective schemes X C Pr defined by quadratic equations and satisfying a technical hypothesis on the fibres of the rational map associated to the linear system of quadrics defining X. Our assumption is related to the syzygies of the defining equations and, in particular, it is weaker than properties N 2, N 2;2 and K 2. In this setting, we show that the degree d of X C Pr is bounded by a function of its codimension c, whose asymptotic behavior is given by 2c=p4 2c, thus improving the obvious bound d ≤ 2 c. More precisely, we get the bound d 2 c ≤ (2c-1 c-1 ) Furthermore, if X satisfies property Np or N2;p, we obtain the better bound (d+2-p 2) ≤ (2c+3-2p c+1-p) Some classification results are also given when equality holds.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Varieties defined by quadrics; 2-Veronese embeddings; apparent double points; syzygies
Elenco autori:
A. Alzati, J.C. Sierra
Autori di Ateneo:
ALZATI ALBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/178778
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0