Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Temporal interpretation of monadic intuitionistic quantifiers

Articolo
Data di Pubblicazione:
2023
Citazione:
Temporal interpretation of monadic intuitionistic quantifiers / G. Bezhanishvili, L. Carai. - In: THE REVIEW OF SYMBOLIC LOGIC. - ISSN 1755-0203. - 16:1(2023 Mar), pp. 164-187. [10.1017/S1755020321000496]
Abstract:
We show that monadic intuitionistic quantifiers admit the following temporal interpretation: "always in the future" (for ∀) and "sometime in the past" (for ∃). It is well known that Prior's intuitionistic modal logic MIPC axiomatizes the monadic fragment of the intuitionistic predicate logic, and that MIPC is translated fully and faithfully into the monadic fragment MS4 of the predicate S4 via the Gödel translation. To realize the temporal interpretation mentioned above, we introduce a new tense extension TS4 of S4 and provide a full and faithful translation of MIPC into TS4. We compare this new translation of MIPC with the Gödel translation by showing that both TS4 and MS4 can be translated fully and faithfully into a tense extension of MS4, which we denote by MS4:t. This is done by utilizing the relational semantics for these logics. As a result, we arrive at the diagram of full and faithful translations shown in Figure 1 which is commutative up to logical equivalence. We prove the finite model property (fmp) for MS4:t using algebraic semantics, and show that the fmp for the other logics involved can be derived as a consequence of the fullness and faithfulness of the translations considered.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Gödel translation; Intuitionistic logic; Modal logic; Monadic quantifiers; Tense logic;
Elenco autori:
G. Bezhanishvili, L. Carai
Autori di Ateneo:
CARAI LUCA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1018314
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1018314/2327363/TS4-revised-2021-10-06.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/01 - Logica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0