Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Quantitative Isoperimetry à la Levy-Gromov

Articolo
Data di Pubblicazione:
2019
Citazione:
Quantitative Isoperimetry à la Levy-Gromov / F. Cavalletti, F. Maggi, A. Mondino. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 72:8(2019 Aug), pp. 1631-1677. [10.1002/cpa.21808]
Abstract:
On a Riemannian manifold with a positive lower bound on the Ricci tensor, the distance of isoperimetric sets from geodesic balls is quantitatively controlled in terms of the gap between the isoperimetric profile of the manifold and that of a round sphere of suitable radius. The deficit between the diameters of the manifold and of the corresponding sphere is bounded likewise. These results are actually obtained in the more general context of (possibly non-smooth) metric measure spaces with curvature-dimension conditions through a quantitative analysis of the transport-rays decompositions obtained by the localization method.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
F. Cavalletti, F. Maggi, A. Mondino
Autori di Ateneo:
CAVALLETTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1011349
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0