Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Indeterminacy estimates and the size of nodal sets in singular spaces

Articolo
Data di Pubblicazione:
2021
Citazione:
Indeterminacy estimates and the size of nodal sets in singular spaces / F. Cavalletti, S. Farinelli. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 389:(2021), pp. 107919.1-107919.38. [10.1016/j.aim.2021.107919]
Abstract:
We obtain the sharp version of the uncertainty principle recently introduced in [46], and improved by [12], relating the size of the zero set of a continuous function having zero mean and the optimal transport cost between the mass of the positive part and the negative one. The result is actually valid for the wide family of metric measure spaces verifying a synthetic lower bound on the Ricci curvature, namely the MCP(K, N) or CD(K, N) condition, thus also extending the scope beyond the smooth setting of Riemannian manifolds. Applying the uncertainty principle to eigenfunctions of the Laplacian in possibly non-smooth spaces, we obtain new lower bounds on the size of their nodal sets in terms of the eigenvalues. Those cases where the Laplacian is possibly nonlinear are also covered and applications to linear combinations of eigenfunctions of the Laplacian are derived. To the best of our knowledge, no previous results were known for non smooth spaces. (C) 2021 Elsevier Inc. All rights reserved.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Optimal transport; Eigenfunctions; Singular spaces
Elenco autori:
F. Cavalletti, S. Farinelli
Autori di Ateneo:
CAVALLETTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1011289
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0