Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Best constants in a borderline case of second order Moser type inequalities

Articolo
Data di Pubblicazione:
2010
Citazione:
Best constants in a borderline case of second order Moser type inequalities / D. Cassani, B. Ruf, C. Tarsi. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 27:1(2010 Jan), pp. 73-93. [10.1016/j.anihpc.2009.07.006]
Abstract:
We study optimal embeddings for the space of functions whose Laplacian \Delta u belongs to L^1(\Omega), where \Omega\subset\R^N is a bounded domain. This function space turns out to be strictly larger than the Sobolev space W^{2,1}(\Omega) in which the whole set of second order derivatives is considered. In particular, in the limiting Sobolev case, when N=2, we establish a sharp embedding inequality into the Zygmund space L_{exp}(\Omega). On one hand, this result enables us to improve the Brezis--Merle \cite{BM} regularity estimate for the Dirichlet problem \Delta u=f(x)\in L^1(\Omega), u=0 on \partial\Omega; on the other hand, it represents a borderline case of D.R. Adams'' \cite{DRA} generalization of Trudinger-Moser type inequalities to the case of higher order derivatives. Extensions to dimension N\geq are also given. Besides, we show how the best constants in the embedding inequalities change under different boundary conditions
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Best constants; Brezis-Merle type results; Elliptic equations; Pohožaev, Strichartz and Trudinger-Moser inequalities; Regularity estimates in L1; Sobolev embeddings
Elenco autori:
D. Cassani, B. Ruf, C. Tarsi
Autori di Ateneo:
TARSI CRISTINA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/143287
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0