Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Adversarial defect synthesis for industrial products in low data regime

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
Adversarial defect synthesis for industrial products in low data regime / P. Coscia, A. Genovese, F. Scotti, V. Piuri - In: 2023 IEEE International Conference on Image Processing (ICIP)[s.l] : IEEE, 2023 Sep 11. - ISBN 978-1-7281-9835-4. - pp. 1360-1364 (( convegno ICIP tenutosi a Kuala Lumpur nel 2023 [10.1109/ICIP49359.2023.10222874].
Abstract:
Synthetic defect generation is an important aid for advanced manufacturing and production processes. Industrial scenarios rely on automated image-based quality control methods to avoid time-consuming manual inspections and promptly identify products not complying with specific quality standards. However, these methods show poor performance in the case of ill-posed low-data training regimes, and the lack of defective samples, due to operational costs or privacy policies, strongly limits their large-scale applicability.To overcome these limitations, we propose an innovative architecture based on an unpaired image-to-image (I2I) translation model to guide a transformation from a defect-free to a defective domain for common industrial products and propose simultaneously localizing their synthesized defects through a segmentation mask. As a performance evaluation, we measure image similarity and variability using standard metrics employed for generative models. Finally, we demonstrate that inspection networks, trained on synthesized samples, improve their accuracy in spotting real defective products.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Synthetic defect generation; generative adversarial network; defective mask; residual network
Elenco autori:
P. Coscia, A. Genovese, F. Scotti, V. Piuri
Autori di Ateneo:
COSCIA PASQUALE ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/979348
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/979348/2285140/icip23.pdf
Titolo del libro:
2023 IEEE International Conference on Image Processing (ICIP)
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0