Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Bifurcation into spectral gaps for strongly indefinite Choquard equations

Articolo
Data di Pubblicazione:
2023
Citazione:
Bifurcation into spectral gaps for strongly indefinite Choquard equations / H. Luo, B. Ruf, C. Tarsi. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - (2023), pp. 2350001.1-2350001.35. [Epub ahead of print] [10.1142/S0219199723500013]
Abstract:
In this paper, we consider the semilinear elliptic equations(-delta u +V(x)u= (I-alpha * |u|(p))|u|(p-2)u + lambda u for x is an element of R-N,u(x) -> 0 as |x| -> infinity,where I alpha is a Riesz potential, p is an element of (N+alpha/N, N+alpha/N-2 ), N >= 3 and V is continuous periodic. We assume that 0 lies in the spectral gap (a, b) of -delta + V. We prove the existence of infinitely many geometrically distinct solutions in H-1(R-N) for each lambda is an element of (a, b), which bifurcate from b if N+alpha/N < p < 1+2+alpha/N. Moreover, b is the unique gap-bifurcation point (from zero) in [a,b]. When lambda=a, we find infinitely many geometrically distinct solutions in H-loc(2)(R-N). Final remarks are given about the eventual occurrence of a bifurcation from infinity in lambda = a.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Choquard equation; Schrodinger-Newton equation; bifurcation into spectral gaps;
Elenco autori:
H. Luo, B. Ruf, C. Tarsi
Autori di Ateneo:
TARSI CRISTINA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/975108
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/975108/2407986/2205.02542v1.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0