Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Projective orbifolds of Nikulin type

Articolo
Data di Pubblicazione:
2024
Citazione:
Projective orbifolds of Nikulin type / C. Camere, A. Garbagnati, G. Kapustka, M. Kapustka. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 18:1(2024), pp. 165-208. [10.2140/ant.2024.18.165]
Abstract:
We study projective irreducible symplectic orbifolds of dimension four that are deformations of partial resolutions of quotients of hyperk¨ahler manifolds of K3[2]-type by symplectic involutions; we call them orbifolds of Nikulin type. We first classify those projective orbifolds that are really quotients, by describing all families of projective fourfolds of K3[2]-type with a symplectic involution and the relation with their quotients, and then study their deformations. We compute the Riemann– Roch formula for Weil divisors on orbifolds of Nikulin type and using this we describe the first known locally complete family of singular irreducible symplectic varieties as double covers of special complete intersections (3, 4) in P6
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
irreducible symplectic manifolds; irreducible symplectic orbifolds; symplectic automorphisms; 4-folds;
Elenco autori:
C. Camere, A. Garbagnati, G. Kapustka, M. Kapustka
Autori di Ateneo:
CAMERE CHIARA ( autore )
GARBAGNATI ALICE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1022709
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1022709/2341032/Orbifolds_of_Nikulin_type___revision.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0