Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review

Articolo
Data di Pubblicazione:
2023
Citazione:
Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review / M. Ferro, F. Crocetto, B. Barone, F. Del Giudice, M. Maggi, G. Lucarelli, G.M. Busetto, R. Autorino, M. Marchioni, F. Cantiello, F. Crocerossa, S. Luzzago, M. Piccinelli, F.A. Mistretta, M. Tozzi, L. Schips, U.G. Falagario, A. Veccia, M.D. Vartolomei, G. Musi, O. de Cobelli, E. Montanari, O.S. Tătaru. - In: THERAPEUTIC ADVANCES IN UROLOGY. - ISSN 1756-2872. - 15:(2023), pp. 17562872231164803.1-17562872231164803.26. [10.1177/17562872231164803]
Abstract:
Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
artificial intelligence; imaging; machine learning; radiomics; renal cancer;
Elenco autori:
M. Ferro, F. Crocetto, B. Barone, F. Del Giudice, M. Maggi, G. Lucarelli, G.M. Busetto, R. Autorino, M. Marchioni, F. Cantiello, F. Crocerossa, S. Luzzago, M. Piccinelli, F.A. Mistretta, M. Tozzi, L. Schips, U.G. Falagario, A. Veccia, M.D. Vartolomei, G. Musi, O. de Cobelli, E. Montanari, O.S. Tătaru
Autori di Ateneo:
FERRO MATTEO ( autore )
MISTRETTA FRANCESCO ALESSANDRO ( autore )
MONTANARI EMANUELE ( autore )
MUSI GENNARO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/967449
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/967449/2190897/17562872231164803.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MED/24 - Urologia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0