Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Tree-based optimization for image-to-image translation with imbalanced datasets on the edge

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
Tree-based optimization for image-to-image translation with imbalanced datasets on the edge / P. Coscia, A. Genovese, V. Piuri, F. Rundo, F. Scotti (... IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS). - In: 2023 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)[s.l] : IEEE, 2023 Jun 12. - ISBN 979-8-3503-3636-8. - pp. 1-6 (( convegno CIVEMSA tenutosi a Gammarth nel 2023 [10.1109/CIVEMSA57781.2023.10230904].
Abstract:
Image-to-image (I2I) translation models typically refer to a class of adversarial architectures aiming to transfer an image content from a source domain to a target domain. To increase the image quality, data augmentation techniques or collecting new samples represent valid options yet lack of diversity and overfitting may negatively impact on the final results. In this regard, several practical scenarios do not permit to include new samples, or to employ powerful hardware, due to privacy policies or insufficient financial resources, leading to use imbalanced sets of images and favoring the more populated domain. To overcome these issues, we propose a simple and effective procedure to take advantage of the combination of critical learning parameters and demonstrate that averaging weights of multiple pre-trained I2I models is beneficial for increasing model performance, which can be optimized for edge computing without hurting the quality of synthesized images. To this end, we define a tree-based structure, including multiple I2I translation models, that outputs a single and more reliable network. We demonstrate that this strategy increases image quality and also show that our binary-tree learning procedure has a beneficial impact on edge devices, and it can be easily applied to architectures trained on different domains.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Image-to-image translation; fine-tuning; edge devices; generative adversarial networks; optimization
Elenco autori:
P. Coscia, A. Genovese, V. Piuri, F. Rundo, F. Scotti
Autori di Ateneo:
COSCIA PASQUALE ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/967204
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/967204/2276329/civemsa23a.pdf
Titolo del libro:
2023 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0