Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Learning on the Edge: Online Learning with Stochastic Feedback Graphs

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Citazione:
Learning on the Edge: Online Learning with Stochastic Feedback Graphs / E. Esposito, F. Fusco, D. van der Hoeven, N. Cesa Bianchi (ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS). - In: NeurIPS / [a cura di] S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh. - [s.l] : Curran Associates, 2022. - pp. 34776-34788 (( Intervento presentato al 36. convegno Conference on Neural Information Processing Systems : Monday November 28th through Friday December 9th tenutosi a New Orleans nel 2022.
Abstract:
The framework of feedback graphs is a generalization of sequential decisionmaking with bandit or full information feedback. In this work, we study an extension where the directed feedback graph is stochastic, following a distribution similar to the classical Erdős-Rényi model. Specifically, in each round every edge in the graph is either realized or not with a distinct probability for each edge. We prove nearly optimal regret bounds of order min minε p (αε/ε)T, minε(δε/ε)1/3T2/3 (ignoring logarithmic factors), where αε and δε are graph-theoretic quantities measured on the support of the stochastic feedback graph G with edge probabilities thresholded at ε. Our result, which holds without any preliminary knowledge about G, requires the learner to observe only the realized out-neighborhood of the chosen action. When the learner is allowed to observe the realization of the entire graph (but only the losses in the out-neighborhood of the chosen action), we derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers that exhibits improved bounds for some special cases.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
E. Esposito, F. Fusco, D. van der Hoeven, N. Cesa Bianchi
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
ESPOSITO EMMANUEL ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/961320
Titolo del libro:
NeurIPS
Progetto:
European Learning and Intelligent Systems Excellence (ELISE)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0