Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Delta-semidefinite and delta-convex quadratic forms in Banach spaces

Articolo
Data di Pubblicazione:
2008
Citazione:
Delta-semidefinite and delta-convex quadratic forms in Banach spaces / N. Kalton, S.V. Konyagin, L. Vesely. - In: POSITIVITY. - ISSN 1385-1292. - 12:2(2008), pp. 221-240. [10.1007/s11117-007-2106-6]
Abstract:
A continuous quadratic form (“quadratic form”, in short) on a Banach space X is: (a) delta-semidefinite (i.e., representable as a difference of two nonnegative quadratic forms) if and only if the corresponding symmetric linear operator factors through a Hilbert space; (b) delta-convex (i.e., representable as a difference of two continuous convex functions) if and only if T is a UMD-operator. It follows, for instance, that each quadratic form on an infinite-dimensional L p (μ) space (1 ≤ p ≤ ∞) is: (a) delta-semidefinite iff p ≥ 2; (b) delta-convex iff p > 1. Some other related results concerning delta-convexity are proved and some open probms are stated.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Banach space ; continuous quadratic form ; positively semidefinite quadratic form ; delta-semidefinite quadratic form ; delta-convex function ; Walsh-Paley martingale
Elenco autori:
N. Kalton, S.V. Konyagin, L. Vesely
Autori di Ateneo:
VESELY LIBOR ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/55239
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0