Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA

Articolo
Data di Pubblicazione:
2020
Citazione:
A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA / S.J. Al'Aref, G. Singh, J.W. Choi, Z. Xu, G. Maliakal, A.R. van Rosendael, B.C. Lee, Z. Fatima, D. Andreini, J.J. Bax, F. Cademartiri, K. Chinnaiyan, B.J.W. Chow, E. Conte, R.C. Cury, G. Feuchtner, M. Hadamitzky, Y. Kim, S. Lee, J.A. Leipsic, E. Maffei, H. Marques, F. Plank, G. Pontone, G.L. Raff, T.C. Villines, H.G. Weirich, I. Cho, I. Danad, D. Han, R. Heo, J.H. Lee, A. Rizvi, W.J. Stuijfzand, H. Gransar, Y. Lu, J.M. Sung, H. Park, D.S. Berman, M.J. Budoff, H. Samady, P.H. Stone, R. Virmani, J. Narula, H. Chang, F.Y. Lin, L. Baskaran, L.J. Shaw, J.K. Min. - In: JACC: CARDIOVASCULAR IMAGING. - ISSN 1876-7591. - 13:10(2020 Oct), pp. 2162-2173. [10.1016/j.jcmg.2020.03.025]
Abstract:
OBJECTIVES This study sought to identify culprit lesion (CL) precursors among acute coronary syndrome (ACS) patients based on qualitative and quantitative computed tomography-based plaque characteristics.BACKGROUND Coronary computed tomography angiography (CTA) has been validated for patient-level prediction of ACS. However, the applicability of coronary CTA to CL assessment is not known.METHODS Utilizing the ICONIC (Incident COroNary Syndromes Identified by Computed Tomography) study, a nested casecontrol study of 468 patients with baseline coronary CTA, the study included ACS patients with invasive coronary angiography-adjudicated CLs that could be aligned to CL precursors on baseline coronary CTA. Separate blinded core laboratories adjudicated CLs and performed atherosclerotic plaque evaluation. Thereafter, the study used a boosted ensemble algorithm (XGBoost) to develop a predictive model of CLs. Data were randomly split into a training set (80%) and a test set (20%). The area under the receiver-operating characteristic curve of thismodel was compared with that of diameter stenosis (model 1), high-risk plaque features (model 2), and lesion-level features of CL precursors from the ICONIC study (model 3). Thereafter, the machine learning (ML) model was applied to 234 non-ACS patients with 864 lesions to determine model performance for CL exclusion.RESULTS CL precursors were identified by both coronary angiography and baseline coronary CTA in 124 of 234 (53.0%) patients, with a total of 582 lesions (containing 124 CLs) included in the analysis. The ML model demonstrated significantly higher area under the receiver-operating characteristic curve for discriminating CL precursors (0.774; 95% confidence interval [CI]: 0.758 to 0.790) compared with model 1 (0.599; 95% CI: 0.599 to 0.599; p < 0.01), model 2 (0.532; 95% CI: 0.501 to 0.563; p < 0.01), and model 3 (0.672; 95% CI: 0.662 to 0.682; p < 0.01). When applied to the non-ACS cohort, the ML model had a specificity of 89.3% for excluding CLs.CONCLUSIONS In a high-risk cohort, a boosted ensemble algorithm can be used to predict CL from non-CL precursors on coronary CTA. (c) 2020 by the American College of Cardiology Foundation.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
acute coronary syndrome; coronary computed tomography angiography; diameter stenosis; machine learning
Elenco autori:
S.J. Al'Aref, G. Singh, J.W. Choi, Z. Xu, G. Maliakal, A.R. van Rosendael, B.C. Lee, Z. Fatima, D. Andreini, J.J. Bax, F. Cademartiri, K. Chinnaiyan, B.J.W. Chow, E. Conte, R.C. Cury, G. Feuchtner, M. Hadamitzky, Y. Kim, S. Lee, J.A. Leipsic, E. Maffei, H. Marques, F. Plank, G. Pontone, G.L. Raff, T.C. Villines, H.G. Weirich, I. Cho, I. Danad, D. Han, R. Heo, J.H. Lee, A. Rizvi, W.J. Stuijfzand, H. Gransar, Y. Lu, J.M. Sung, H. Park, D.S. Berman, M.J. Budoff, H. Samady, P.H. Stone, R. Virmani, J. Narula, H. Chang, F.Y. Lin, L. Baskaran, L.J. Shaw, J.K. Min
Autori di Ateneo:
ANDREINI DANIELE ( autore )
PONTONE GIANLUCA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/955396
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MED/11 - Malattie dell'Apparato Cardiovascolare
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0