Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Fractional powers of higher-order vector operators on bounded and unbounded domains

Articolo
Data di Pubblicazione:
2022
Citazione:
Fractional powers of higher-order vector operators on bounded and unbounded domains / L. Baracco, F. Colombo, M.M. Peloso, S. Pinton. - In: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY. - ISSN 0013-0915. - 65:4(2022), pp. 912-937. [10.1017/S0013091522000396]
Abstract:
Using the H-infinity-functional calculus for quaternionic operators, we show how to generate the fractional powers of some densely defined differential quaternionic operators of order m >= 1, acting on the right linear quaternionic Hilbert space L-2 (Omega, C circle times H). The operators that we consider are of the type T = i(m-1) (alpha(1)(x)e(1) partial derivative(m)(x1) + alpha(2)(x)e(2)partial derivative(m)(x2) + alpha(3)(x)e(3)partial derivative(m)(x3)), x =(x(1), x(2), x(3)) is an element of (Omega) over bar, where (Omega) over bar is the closure of either a bounded domain Omega with C-1 boundary, or an unbounded domain n in R 3 with a sufficiently regular boundary, which satisfy the so-called property (R) (see Definition 1.3), e(1), e(2), e(3) is an element of H which are pairwise anticommuting imaginary units, a(1), a(2), a(3) : (Omega) over bar subset of R-3 -> R are the coefficients of T. In particular, it will be given sufficient conditions on the coefficients of T in order to generate the fractional powers of T, denoted by P-alpha (T) for alpha is an element of (0, 1), when the components of T, i.e. the operators T-l := alpha(l)partial derivative(m)(x1), do not commute among themselves. This kind of result is to be understood in the more general setting of the fractional diffusion problems. The method used to construct the fractional power of a quaternionic linear operator is a generalization of the method developed by Balakrishnan.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
fractional powers; higher-order vector operators; S-spectrum; S-spectrum approach
Elenco autori:
L. Baracco, F. Colombo, M.M. Peloso, S. Pinton
Autori di Ateneo:
PELOSO MARCO MARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/943449
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/943449/2398735/fractional-powers-of-higher-order-vector-operators-on-bounded-and-unbounded-domains.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0