Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers

Articolo
Data di Pubblicazione:
2022
Citazione:
An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers / E. Premi, T. Costa, S. Gazzina, A. Benussi, F. Cauda, R. Gasparotti, S. Archetti, A. Alberici, J.C. van Swieten, R. Sanchez-Valle, F. Moreno, I. Santana, R. Laforce, S. Ducharme, C. Graff, D. Galimberti, M. Masellis, C. Tartaglia, J.B. Rowe, E. Finger, F. Tagliavini, A. de Mendonça, R. Vandenberghe, A. Gerhard, C.R. Butler, A. Danek, M. Synofzik, J. Levin, M. Otto, R. Ghidoni, G. Frisoni, S. Sorbi, G. Peakman, E. Todd, M. Bocchetta, J.D. Rohrer, B. Borroni. - In: JOURNAL OF ALZHEIMER'S DISEASE. - ISSN 1387-2877. - 86:1(2022), pp. 205-218. [10.3233/JAD-215447]
Abstract:
Background: Magnetic resonance imaging (MRI) measures may be used as outcome markers in frontotemporal dementia (FTD).Objectives: To predict MRI cortical thickness (CT) at follow-up at the single subject level, using brain MRI acquired at baseline in preclinical FTD.Methods: 84 presymptomatic subjects carrying Granulin mutations underwent MRI scans at baseline and at follow-up (31.2 +/- 16.5 months). Multivariate nonlinear mixed-effects model was used for estimating individualized CT at follow-up based on baseline MRI data. The automated user-friendly preGRN-MRI script was coded.Results: Prediction accuracy was high for each considered brain region (i.e., prefrontal region, real CT at follow-up versus predicted CT at follow-up, mean error <= 1.87%). The sample size required to detect a reduction in decline in a 1-year clinical trial was equal to 52 subjects (power = 0.80, alpha = 0.05).Conclusion: The preGRN-MRI tool, using baseline MRI measures, was able to predict the expected MRI atrophy at followup in presymptomatic subjects carrying GRN mutations with good performances. This tool could be useful in clinical trials, where deviation of CT from the predicted model may be considered an effect of the intervention itself.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Frontotemporal dementia; granulin; magnetic resonance imaging; mutation; preclinical; presymptomatic; Atrophy; Brain; Granulins; Humans; Magnetic Resonance Imaging; Mutation; Progranulins; Frontotemporal Dementia
Elenco autori:
E. Premi, T. Costa, S. Gazzina, A. Benussi, F. Cauda, R. Gasparotti, S. Archetti, A. Alberici, J.C. van Swieten, R. Sanchez-Valle, F. Moreno, I. Santana, R. Laforce, S. Ducharme, C. Graff, D. Galimberti, M. Masellis, C. Tartaglia, J.B. Rowe, E. Finger, F. Tagliavini, A. de Mendonça, R. Vandenberghe, A. Gerhard, C.R. Butler, A. Danek, M. Synofzik, J. Levin, M. Otto, R. Ghidoni, G. Frisoni, S. Sorbi, G. Peakman, E. Todd, M. Bocchetta, J.D. Rohrer, B. Borroni
Autori di Ateneo:
GALIMBERTI DANIELA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/943381
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIO/13 - Biologia Applicata
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0