Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Scalable Distributed Data Anonymization for Large Datasets

Articolo
Data di Pubblicazione:
2023
Citazione:
Scalable Distributed Data Anonymization for Large Datasets / S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, G. Oldani, S. Paraboschi, M. Rossi, P. Samarati. - In: IEEE TRANSACTIONS ON BIG DATA. - ISSN 2332-7790. - 9:3(2023 Jun 01), pp. 818-831. [10.1109/TBDATA.2022.3207521]
Abstract:
k-Anonymity and l-diversity are two well-known privacy metrics that guarantee protection of the respondents of a dataset by obfuscating information that can disclose their identities and sensitive information. Existing solutions for enforcing them implicitly assume to operate in a centralized scenario, since they require complete visibility over the dataset to be anonymized, and can therefore have limited applicability in anonymizing large datasets. In this paper, we propose a solution that extends Mondrian (an efficient and effective approach designed for achieving k-anonymity) for enforcing both k-anonymity and l-diversity over large datasets in a distributed manner, leveraging the parallel computation of multiple workers. Our approach efficiently distributes the computation among the workers, without requiring visibility over the dataset in its entirety. Our data partitioning limits the need for workers to exchange data, so that each worker can independently anonymize a portion of the dataset. We implemented our approach providing parallel execution on a dynamically chosen number of workers. The experimental evaluation shows that our solution provides scalability, while not affecting the quality of the resulting anonymization.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Distributed data anonymization; Mondrian; k-Anonymity; l-Diversity; Apache Spark
Elenco autori:
S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, G. Oldani, S. Paraboschi, M. Rossi, P. Samarati
Autori di Ateneo:
DE CAPITANI DI VIMERCATI SABRINA ( autore )
FORESTI SARA ( autore )
LIVRAGA GIOVANNI ( autore )
SAMARATI PIERANGELA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/940404
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/940404/2233034/Scalable_Distributed_Data_Anonymization_for_Large_Datasets.pdf
Progetto:
Multi-Owner data Sharing for Analytics and Integration respecting Confidentiality and Owner control (MOSAICrOWN)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0