Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Boundedness of Bergman projectors on homogeneous Siegel domains

Articolo
Data di Pubblicazione:
2022
Citazione:
Boundedness of Bergman projectors on homogeneous Siegel domains / M. Calzi, M.M. Peloso. - In: RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO. - ISSN 0009-725X. - 72:4(2022), pp. 2653-2701. [10.1007/s12215-022-00798-9]
Abstract:
In this paper we study the boundedness of Bergman projectors on weighted Bergman spaces on homogeneous Siegel domains of Type II. As it appeared to be a natural approach in the special case of tube domains over irreducible symmetric cones, we study such boundedness on the scale of mixed-norm weighted Lebesgue spaces. The sharp range for the boundedness of such operators is essentially known only in the case of tube domains over Lorentz cones. In this paper we prove that the boundedness of such Bergman projectors is equivalent to variuos notions of atomic decomposition, duality, and characterization of boundary values of the mixed-norm weighted Bergman spaces, extending results mostly known only in the case of tube domains over irreducible symmetric cones. Some of our results are new even in the latter simpler context. We also study the simpler, but still quite interesting, case of the "positive" Bergman projectors, the integral operator in which the Bergman kernel is replaced by its modulus. We provide a useful characterization which was previously known for tube domains.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Bergman space; Bergman projection; Homogeneous Siegel domain; Atomic decomposition; Decoupling inequality;
Elenco autori:
M. Calzi, M.M. Peloso
Autori di Ateneo:
CALZI MATTIA ( autore )
PELOSO MARCO MARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/938428
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/938428/2528713/s12215-022-00798-9.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/05 - Analisi Matematica

Settore MATH-03/A - Analisi matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0