Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Monitoring milking parameters to improve milking operations through machine learning algorithms

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Citazione:
Monitoring milking parameters to improve milking operations through machine learning algorithms / J. Wang, D. Lovarelli, M. Guarino - In: Precision Livestock Farming 2022 / [a cura di] D Berckmans., M. Oczak, M. Iwersen, K Wagener. - [s.l] : Organizing Committee of the European Conference on Precision Livestock Farming, 2022. - ISBN 978-83-965360-0-6. - pp. 924-931 (( Intervento presentato al 10. convegno European Conference on Precision Livestock Farming : 29 August through 2 September tenutosi a Wien nel 2022.
Abstract:
The operation of milking is one of the most time-consuming in a dairy cattle farm. Because the management and duration of the whole milking session can be affected by some cows that need a longer milking time than others, it can be useful to shorten the milking time of these cows. In this study, a full dataset of milking data was collected and processed for three months from a dairy cattle farm located in Northern Italy. The aim was to understand how to reduce the daily milking time by evaluating the effect of a different pulsation ratio and detachment flow rate on the duration of milking and udder health. A prediction model for the duration of milking was developed, which was able to identify the proper pulsation ratio and detachment flow rate based on the first 2 minutes of data on milking. If implemented on machines, it can lead to an automatization in the change the pulsation ratio and detachment flow of every cow.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
data analysis; milk production; pulsation ratio; prediction model
Elenco autori:
J. Wang, D. Lovarelli, M. Guarino
Autori di Ateneo:
GUARINO MARCELLA PATRIZIA MARIA ( autore )
LOVARELLI DANIELA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/937269
Titolo del libro:
Precision Livestock Farming 2022
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore AGR/10 - Costruzioni Rurali e Territorio Agroforestale
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0