Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Binary Interaction Methods for High Dimensional Global Optimization and Machine Learning

Articolo
Data di Pubblicazione:
2022
Citazione:
Binary Interaction Methods for High Dimensional Global Optimization and Machine Learning / A. Benfenati, G. Borghi, L. Pareschi. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - (2022). [Epub ahead of print] [10.1007/s00245-022-09836-5]
Abstract:
In this work we introduce a new class of gradient-free global optimization methods based on a binary interaction dynamics governed by a Boltzmann type equation. In each interaction the particles act taking into account both the best microscopic binary position and the best macroscopic collective position. For the resulting kinetic optimization methods, convergence to the global minimizer is guaranteed for a large class of functions under appropriate parameter constraints that do not depend on the dimension of the problem. In the mean-field limit we show that the resulting Fokker-Planck partial differential equations generalize the current class of consensus based optimization (CBO) methods. Algorithmic implementations inspired by the well-known direct simulation Monte Carlo methods in kinetic theory are derived and discussed. Several examples on prototype test functions for global optimization are reported including an application to machine learning.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Gradient-free methods; Global optimization; Boltzmann equation; Mean-field limit; Consensus-based optimization; Machine learning
Elenco autori:
A. Benfenati, G. Borghi, L. Pareschi
Autori di Ateneo:
BENFENATI ALESSANDRO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/930556
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/930556/2041317/s00245-022-09836-5.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/08 - Analisi Numerica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0