Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Fine structure of the singular set of area minimizing hypersurfaces modulo p

Articolo
Data di Pubblicazione:
2022
Citazione:
Fine structure of the singular set of area minimizing hypersurfaces modulo p / C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard. - (2022 Jan 25).
Abstract:
Consider an area minimizing current modulo p of dimension m in a smooth Riemannian manifold of dimension m+1. We prove that its interior singular set is, up to a relatively closed set of dimension at most m−2, a C1,α submanifold of dimension m−1 at which, locally, N≤p regular sheets of the current join transversally, each sheet counted with a positive multiplicity ki so that ∑iki=p. This completes the analysis of the structure of the singular set of area minimizing hypersurfaces modulo p, initiated by J. Taylor for m=2 and p=3 and extended by the authors to arbitrary m and all odd p in arXiv:2105.08135. We tackle the remaining case of even p by showing that the set of singular points admitting a flat blow-up is of codimension at least two in the current. First, we prove a structural result for the singularities of minimizers in the linearized problem, by combining an epiperimetric inequality with an analysis of homogeneous minimizers to conclude that the corresponding degrees of homogeneity are always integers; second, we refine Almgren's blow-up procedure to prove that all flat singularities of the current persist as singularities of the Dir-minimizing limit. An important ingredient of our analysis is the uniqueness of flat tangent cones at singular points, recently established by Minter and Wickramasekera in arXiv:2111.11202
Tipologia IRIS:
24 - Pre-print
Elenco autori:
C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard
Autori di Ateneo:
STUVARD SALVATORE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/918846
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/918846/2009700/Modp%20currents%20structure%20final.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0