Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

An explicit construction of ruled surfaces

Articolo
Data di Pubblicazione:
2009
Citazione:
An explicit construction of ruled surfaces / A. Alzati, F. Tonoli. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 213:3(2009), pp. 329-348.
Abstract:
The main goal of this paper is to give a general algorithm to compute, via computer-algebra systems, an explicit set of generators of the ideals of the projective embeddings of ruled surfaces, i.e. projectivizations of rank two vector bundles over curves, such that the fibers are embedded as smooth rational curves. There are two different applications of our algorithm. Firstly, given a very ample linear system on an abstract ruled Surface, our algorithm allows computing the ideal of the embedded surface, all the syzygies, and all the algebraic invariants which are computable from its ideal as, for instance, the k-regularity. Secondly, it is possible to prove the existence of new embeddings of ruled surfaces, The method can be implemented over any computer-algebra system able to deal with commutative algebra and Grobner-basis computations. An implementation of our algorithms for the computer-algebra system Macaulay2 (cf. [Daniel R. Grayson, Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry, 1993. Available at http://www.math.uiuc.edu/Macaulay2/]) and explicit examples are enclosed.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Vector-bundles; projective-normality; varieties
Elenco autori:
A. Alzati, F. Tonoli
Autori di Ateneo:
ALZATI ALBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/47604
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/47604/1483532/A-T71-jPaA.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0