Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Predicting long-term mortality in TAVI patients using machine learning techniques

Articolo
Data di Pubblicazione:
2021
Citazione:
Predicting long-term mortality in TAVI patients using machine learning techniques / M. Penso, M. Pepi, L. Fusini, M. Muratori, C. Cefalu, V. Mantegazza, P. Gripari, S.G. Ali, F. Fabbiocchi, A.L. Bartorelli, E.G. Caiani, G. Tamborini. - In: JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE. - ISSN 2308-3425. - 8:4(2021), pp. 44.1-44.14. [10.3390/JCDD8040044]
Abstract:
Background: Whereas transcatheter aortic valve implantation (TAVI) has become the gold standard for aortic valve stenosis treatment in high-risk patients, it has recently been extended to include intermediate risk patients. However, the mortality rate at 5 years is still elevated. The aim of the present study was to develop a novel machine learning (ML) approach able to identify the best predictors of 5-year mortality after TAVI among several clinical and echocardiographic variables, which may improve the long-term prognosis. Methods: We retrospectively enrolled 471 patients undergoing TAVI. More than 80 pre-TAVI variables were collected and analyzed through different feature selection processes, which allowed for the identification of several variables with the highest predictive value of mortality. Different ML models were compared. Results: Multilayer perceptron resulted in the best performance in predicting mortality at 5 years after TAVI, with an area under the curve, positive predictive value, and sensitivity of 0.79, 0.73, and 0.71, respectively. Conclusions: We presented an ML approach for the assessment of risk factors for long-term mortality after TAVI to improve clinical prognosis. Fourteen potential predictors were identified with the organic mitral regurgitation (myxomatous or calcific degeneration of the leaflets and/or annulus) which showed the highest impact on 5 years mortality.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Aortic valve disease; Machine learning; Mortality prediction; TAVI
Elenco autori:
M. Penso, M. Pepi, L. Fusini, M. Muratori, C. Cefalu, V. Mantegazza, P. Gripari, S.G. Ali, F. Fabbiocchi, A.L. Bartorelli, E.G. Caiani, G. Tamborini
Autori di Ateneo:
MANTEGAZZA VALENTINA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/907275
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/907275/1979419/6.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MED/11 - Malattie dell'Apparato Cardiovascolare
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0