Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations

Articolo
Data di Pubblicazione:
2021
Citazione:
A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations / P.F. Antonietti, G. Manzini, S. Scacchi, M. Verani. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 31:14(2021 Dec 30), pp. 2825-2853. [10.1142/S0218202521500627]
Abstract:
The virtual element method is well suited to the formulation of arbitrarily regular Galerkin approximations of elliptic partial differential equations of order 2p1, for any integer p1 ≥ 1. In fact, the virtual element paradigm provides a very effective design framework for conforming, finite dimensional subspaces of Hp2(ω), ω being the computational domain and p2 ≥ p1 another suitable integer number. In this review, we first present an abstract setting for such highly regular approximations and discuss the mathematical details of how we can build conforming approximation spaces with a global high-order regularity on ω. Then, we illustrate specific examples in the case of second- and fourth-order partial differential equations, that correspond to the cases p1 = 1 and 2, respectively. Finally, we investigate numerically the effect on the approximation properties of the conforming highly-regular method that results from different choices of the degree of continuity of the underlying virtual element spaces and how different stabilization strategies may impact on convergence.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
arbitrarily regular conforming approximation spaces; second- and higher-order elliptic PDEs; Virtual element methods
Elenco autori:
P.F. Antonietti, G. Manzini, S. Scacchi, M. Verani
Autori di Ateneo:
SCACCHI SIMONE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/906962
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/906962/1978592/antoniettiMSV_2021.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/08 - Analisi Numerica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0