Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Optimal Tuning of Quantum Generative Adversarial Networks for Multivariate Distribution Loading

Articolo
Data di Pubblicazione:
2022
Citazione:
Optimal Tuning of Quantum Generative Adversarial Networks for Multivariate Distribution Loading / G. Agliardi, E. Prati. - In: QUANTUM REPORTS. - ISSN 2624-960X. - 4:1(2022), pp. 75-105. [10.3390/quantum4010006]
Abstract:
Loading data efficiently from classical memories to quantum computers is a key challenge of noisy intermediate-scale quantum computers. Such a problem can be addressed through quantum generative adversarial networks (qGANs), which are noise tolerant and agnostic with respect to data. Tuning a qGAN to balance accuracy and training time is a hard task that becomes paramount when target distributions are multivariate. Thanks to our tuning of the hyper-parameters and of the optimizer, the training of qGAN reduces, on average, the Kolmogorov–Smirnov statistic of 43–64% with respect to the state of the art. The ability to reach optima is non-trivially affected by the starting point of the search algorithm. A gap arises between the optimal and sub-optimal training accuracy. We also point out that the simultaneous perturbation stochastic approximation (SPSA) optimizer does not achieve the same accuracy as the Adam optimizer in our conditions, thus calling for new advancements to support the scaling capability of qGANs.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
uantum machine learning; quantum generative adversarial networks; multivariate quantum distributions; quantum data loading; quantum data encoding; quantum finance
Elenco autori:
G. Agliardi, E. Prati
Autori di Ateneo:
PRATI ENRICO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/906262
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/906262/1976817/quantumrep-04-00006.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0