Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A potential well argument for a semilinear parabolic equation with exponential nonlinearity.

Capitolo di libro
Data di Pubblicazione:
2020
Citazione:
A potential well argument for a semilinear parabolic equation with exponential nonlinearity / M. Ishiwata, B. Ruf, F. Sani, E. Terraneo (MATRIX BOOK SERIES). - In: 2018 MATRIX Annals / [a cura di] D.R. Wood, J. de GierCheryl, E. Praeger, T. Tao. - Prima edizione. - [s.l] : Springer, 2020. - ISBN 978-3-030-38229-2. - pp. 265-273 [10.1007/978-3-030-38230-8_17]
Abstract:
"We consider the Cauchy problem for a two space dimensional parabolic equation with square exponential nonlinearity. More precisely, {∂tu=Δu−u+λf(u)u(0,x)=u0(x)in (0,T)×R2,in R2, where λ>0, and f(u):=2α0ueα0u2, for some α0>0. We take into account initial data in the energy space H1(R2), i.e. u0∈H1(R2), and in view of the Trudinger-Moser inequality, the nonlinearity f (which has square exponential growth at infinity) is in the energy critical regime. "We look for sufficient conditions in order to predict from the initial data whether the solution blows up in finite time or the solution exists globally in time. Our main tools are energy methods, and the so-called potential well argument. If 0<12α0, we prove that for energies below the ground state level, the dichotomy between blow-up and global existence is determined by the sign of a suitable functional.''
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Nonlinear heat equation; evolution equation; blow up
Elenco autori:
M. Ishiwata, B. Ruf, F. Sani, E. Terraneo
Autori di Ateneo:
TERRANEO ELIDE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/903582
Titolo del libro:
2018 MATRIX Annals
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0